Long cycles in 3-polytopes

Marc Noy

Let G be the skeleton of a 3-polytope. By Steinitz’s theorem, we may consider equivalently 3-connected planar graphs.

Problem. Does there exist $\alpha > 0$ such that almost all 3-connected planar graphs with n vertices have a cycle of length αn?

Clearly we may consider instead graphs with n edges, or with n faces. It is known that there are 3-connected planar graphs whose longest cycle has length at most $9n^{\log_3 2}$; in fact there is always a cycle of length $\Omega(n^{\log_3 2})$ (see [1] and the references therein).

For triangulations (which correspond to simplicial polytopes, that is, every face is a triangle) we have a positive answer to the problem above. A triangulation T is 4-connected if it has no separating triangle, that is, a triangle which is not a face. After removing the interior of all separating triangles we get the 4-connected core C of the triangulation, which is Hamiltonian by Tutte’s theorem. Note that a Hamiltonian cycle of C gives rise to a cycle of T of the same length.

It has been shown [2] that with high probability the 4-connected core of a triangulation with n edges has cn edges for some constant $c > 0$. Hence this implies the existence of a cycle of linear length in T.

Using recent results on planar graphs [3], an positive solution to the problem above would imply that a random planar graph with n vertices has almost surely a cycle of linear length.

References

